Summer Packet for Students Entering Grade 8

All students entering Math 8 <u>MUST</u> complete this summer packet as they will be collected and graded upon return to school. All examples have been very carefully crafted to ensure your success. *Please <u>read</u> and <u>study</u> them carefully.*

This packet is due on the first day of class.

Student Responsibilities

Student will be able to improve their own math performance by:

- Completing the summer math packet
- Reviewing math skills throughout the summer months
- Practicing mathematics approximately 20-30 minutes a day 4-5 days a week
- See next page for websites
- Possible quiz upon return to school covering SOME of the material

Student Signature

Date

Parent /Guardian Responsibilities

Parents / Guardians will be able to promote student success in math by:

- Supporting and monitoring your child's completion of the math summer packet
- Encouraging your child's use of math concepts in summer activities

Parent's/Guardian's Signature

Date

Math Resource Websites

https://www.mobymax.com/signin

http://www.mathplayground.com/mathvideos.html

http://www.aaamath.com

http://www.onlinemathlearning.com/grade-7.html

http://www.sheppardsoftware.com/math.htm

http://www.ixl.com

http://www.khanacademy.org/#browse

http://aplusmath.com/Flashcards/index.html

http://www.purplemath.com/modules/index.htm

http://www.321know.com/grade8.htm

http://nlvm.usu.edu/

http://coolmath4kids.com/

http://appleuniversity.com/

http://youtube.com/

Fraction Operations

Finding equivalent fractions. HINT: Use your knowledge of factors to help you!, and there may be more than one answer!

Example: Find 2 equivalent fractions to the formula $-=\frac{2}{4}=$	ollowing: $\frac{2}{4}$
$\frac{1}{2} = \frac{2}{4} = \frac{6}{12}$	
1) $= \frac{7}{21} =$	2) $=\frac{14}{56}=$

Addition of Fractions

Example: Fractions can only be added when the DENOMINATOR is the SAME (you *must* use your knowledge of equivalent fractions for this!)

$$\frac{1}{8} + \frac{1}{2} = ?$$

Since "8" is the larger denominator, make both fractions out of "8"

$$\frac{1}{8} = \frac{1}{8}$$
 and $\frac{1}{2} = \frac{4}{8}$
Now we have $\frac{1}{8} + \frac{4}{8} = \frac{5}{8}$

Add and present answers in simplest form.

1)
$$\frac{2}{12} + \frac{4}{12} = ---$$
 2) $\frac{2}{5} + \frac{4}{3} = ---$

Subtraction of Fractions

Example: Fractions can only be subtracted when the DENOMINATOR is the SAME (you *must* use your knowledge of equivalent fractions for this!)

 $\frac{1}{2} - \frac{1}{8} = ?$ Since "8" is the larger denominator, make both fractions out of "8" $\frac{1}{8} = \frac{1}{8} \qquad \text{and} \qquad \qquad \frac{1}{2} = \frac{4}{8}$ Now we have $\frac{4}{8} - \frac{1}{8} = \frac{3}{8}$

Subtract, and present answers in simplest form.

1)
$$\frac{7}{12} - \frac{3}{6} = --$$
 2) $\frac{7}{10} - \frac{1}{3} = --$

Multiplication of Fractions

Example: You can multiply ANY fraction by multiplying numerator x numerator and denominator x denominator ©

 $\frac{1}{3} \times \frac{3}{12} = ?$ $\frac{1 \times 3}{3 \times 12} = \frac{3}{36}$

Now, 3 and 36 have a factor in COMMON... "3". So, find an equivalent fraction with a smaller numerator and denominator.

$$\frac{3}{36} = \frac{1}{12} \checkmark$$

Multiply:

1) $\frac{1}{3} \times \frac{3}{6} = --= -$ 2) $\frac{4}{8} \times \frac{1}{4} = --= -$

Don't forget to simplify!

Divide:

1)
$$\frac{1}{3} \div \frac{3}{5} = -$$
 2) $\frac{4}{5} \div \frac{1}{2} = -$ 3) $\frac{1}{2} \div \frac{1}{6} = -$

Scrap Area:

Translating Words into Mathematical Expressions

Example: 8 times 2 means <u>8 x 2</u> 4 + c means <u>c more than 4</u>

Translate the words into numbers, variables, and symbols.

Proportional Reasoning

A proportion is 2 ratios (fractions) separated by an "=" sign.

Solve.

1)
$$\frac{1}{3} = \frac{x}{18}$$
 $x =$ 2) $\frac{2}{4} = \frac{8}{x}$ $x =$ 3) $\frac{5}{x} = \frac{10}{50}$ $x =$

Percents

Example: Per cent means "out of 100". The percent represents a part of ONE WHOLE (100%).
When you see "out of" you know to make a fraction (remember ratios??).
So, 75% means "75 out of 100" or "75 hundredths". Written symbolically it's: $\frac{75}{100}$.
You also know that the <i>fraction bar</i> means to DIVIDE.
So, "75 out of 100" ALSO means "75 ÷ 100" which is 0.75.

Write as a decimal.

1) 35% =	2) 7% =	3) 445% =
Example:		
0.50 really means "0 wholes and 50 h	undredths." **Yes, the decimal places DO	O mean something!!**
So, $\frac{50}{100}$, which means "50 out of 100"	or "50%"	
8.00 really means "8 wholes and 0 parts	ts."	
If 1 whole = 100%, 8 wholes = 800%.	So, if you have 8 wholes, you have 800%	
Write as a percent.		
4) 0.85 =	5) 3.00 =	6) 0.08 =

Example:

Remember: That little fraction bar means, "divide."

 $\frac{1}{5}$ means "1 ÷ 5"

1 ÷ 5 = "0.20"

This is read as "0 and 20 hundredths" or "20 out of 100" It can be written as $\frac{20}{100}$ which is = 20%

Write a percent.

Remember: the word Remember: A percent <u>Example:</u> What is 60% of 20?	"of" means "multiply." MUST be changed to a fraction or decima	al to compute an answer!
60% changes to 0.60	OR	60% changes to $\frac{60}{100}$
0.60 x 20		$\frac{80}{100}$ x 20
12		12
3) What is 25% of 40?	4) What is 200% o	of 50?

Scrap Area:

Integer Operations

	Addition and Subtraction of <u>Example:</u>	f Integers
"-" means: minus, sub "+" means: add, plus	btract, take away AND negative. When you s AND positive. When you see this symbol, mo	see this symbol, move LEFT on the number line. ove RIGHT on the number line.
	<i>Combinations:</i> When you have a "+	(-)", move LEFT
	<i>Combinations:</i> When you have a "-	(+)", move LEFT
	The "-" ALWAYS win	s!
	Combinations: When you have a "- (-)", move RIGHT
	So, when you have 3 + (START at 3 on the numb Move LEFT 9 units End on -6	(-9) er line
	What about -9 – (+3) START at -9 on the numb Move LEFT 3 units End on -12) ver line
	What about -3 – (-9) START at -3 on the numb Move RIGHT 9 units End on +6) ber line s
1) 12 + (-7) =	2) 4 + (-3) =	3) 4 – (+3) =
4) -5 + (-2) =	5) -2 + (-5) =	6) -5 - (-2) =
7) -2 - (-5) =		
Scrap Area:		

Multiplication and Division of Integers

1) 12 x (-7) =	2) 12 x 5 =	3) 4 x (-3) =
4) 14 ÷ (-2) =	5) -5 x (-2) =	6) -25 ÷ (-5) =
7) -5 x 2 =	8) -40 ÷ (-5) =	

Evaluating Expressions/Equations

Remember PEMDAS

PEMDAS helps you remember which operation to do first when you have more than one in a problem. Note: Multiply and divide as those operations appear in order from left to right. Do the same for addition and subtraction.

8

When asked to *evaluate* an expression/equation, it means you first SUBSTITUTE a number for the variable, and THEN you use PEMDAS to solve!

Example:

1) (30 – 3) ÷ 3 =	2) 1 + 7 ² =	3) 8 + 6 x 9 =
4) 15 + 40 ÷ 20 =	5) 20 + 16 – 15 =	6) 19 - 15 - 3 =
Evaluate.		
7) $n^2 - m; m = 7$, and $n = 8$	8) 8 (<i>x</i> – <i>y</i>); <i>x</i> = 5, and <i>y</i> = 2	9) <i>yx</i> ÷ 2; <i>x</i> = 7, and <i>y</i> = 2

Solving and checking equations: Big ideas (isolate the variable using inverse operations)

Examples:

1. Solve:	16 – 11w = 5	
Inverse operations:	-16 -16	(subtraction property of equality)
	<u>-11w</u> = <u>-11</u>	
	-11 -11	(division property of equality)
	w=1	
2. Solve:	-6x = 2x - 2	
	<u>-2x -2x</u>	(subtraction property of equality)
	<u>-8x</u> = <u>-2</u>	
Inverse operations:	-8 -8	(division property of equality)
	x = 1⁄4	
3. Solve:	-5m – 6 = 6 – m	
	<u>+5m +5m</u>	(addition property of equality)

Inverse operations:

+5m	(addition property of equality)
-6 = 6 + 4m	
<u>-6 = -6</u>	(subtraction property of equality)
<u>-12</u> = <u>4m</u>	
4 4	(division property of equality)
-3 = m	

Practice: Solve, showing use of properties of equality (see above). Check each solution using the 3 Rs (rewrite, replace, and recalculate)

1) 3x = 12 2) 2x + 5 = 19

4) 3(x + 4) = 183) 4x + 5 = 2x + 19